Fungal Metabolites. Part III.¹ The Structure of Atrovenetin: 194. X-Ray Analysis of Atrovenetin Orange Trimethyl Ether Ferrichloride.²

By I. C. PAUL and G. A. SIM.

From the results of an X-ray study of atrovenetin orange trimethyl ether ferrichloride we assign the constitution (V) to atrovenetin, the metabolite of Penicillium atrovenetum. The crystals of the ferrichloride belong to the monoclinic system, space group $P2_1-C_2^2$, with four units of $C_{22}H_{25}O_6FeCl_4$ in the cell of dimensions a = 17.04, b = 9.69, c = 15.66 Å, $\beta = 96^{\circ} 35'$. Three-dimensional Patterson and Fourier methods were employed for the determination of the crystal structure. The two independent C₂₂H₂₅O₆FeCl₄ groups constituting the asymmetric crystal unit are disposed as if related closely, but not exactly, by a glide plane parallel to (010), and the majority of atoms in the unit cell conform approximately to the symmetry of the space group $P2_1/a$. This feature of the crystal structure made the refinement of atomic positions difficult. The average Fe-Cl bond length in the tetrahedral FeCl_{4}^{-} anions is 2.17 Å.

ATROVENETIN, C19H18O6, was first isolated from Penicillium atrovenetum by Neill and Raistrick³ who showed that the substance contains four hydroxyl groups (formation of monomethyl, trimethyl, and tetramethyl ethers), a hydrogen-bonded carbonyl group, and two or three C-methyl groups (Kühn-Roth). The tetramethyl ethers were insoluble in alkali and the remaining oxygen function was assumed to be ethereal.

The substances norherqueinone, $C_{19}H_{18}O_7$, and its monomethyl ether, herqueinone, $C_{20}H_{20}O_7$, are present as colouring pigments in *P. herquei* Bainier and Sartory,⁴⁻⁶ a species

- ¹ Part II, Paul, Sim, Hamor, and Robertson, J., 1963, 5502.
- ² For a preliminary report see Paul, Sim, and Morrison, Proc. Chem. Soc., 1962, 352.
- ³ Neill and Raistrick, Biochem. J., 1957, **65**, 166. ⁴ Stodola, Raper, and Fennel, Nature, 1951, **167**, 773.
- ⁵ Galarraga, Neill, and Raistrick, Biochem. J., 1955, 61, 456.
- ⁶ Harman, Cason, Stodola, and Adkins, J. Org. Chem., 1955, 20, 1260.

closely related morphologically to *P. atrovenetum*. Barton and his collaborators showed ⁷ that deoxynorherqueinone, obtained by reduction of norherqueinone with zinc and acetic acid,⁵ is identical with atrovenetin. Acid hydrolysis of norherqueinone gives isopropyl methyl ketone and norxanthoherquein, $C_{14}H_{10}O_7$,^{5,6} to which Barton, de Mayo, Morrison, and Raistrick ⁸ assigned structure (I) on the basis of spectroscopic and degradative studies. Oxidation of atrovenetin with alkaline hydrogen peroxide gave an optically active substance, $C_{18}H_{16}O_6$, of part structure (II) with hydrogen bonding between hydroxyl and carbonyl groups on both sides of the anhydride ring, proving that the ether bridge in atrovenetin is attached to ring B of the perinaphthenone nucleus.⁸

Neill and Raistrick obtained a phenol, $C_{15}H_{14}N_2O_9$, by oxidation of atrovenetin with nitric acid. Barton and his co-workers established the constitution (III) for this product and, as the ethereal oxygen is separated by two carbon atoms from the benzene ring in (III), deduced that (IV), rather than (V), must represent the constitution of atrovenetin.⁸

Atrovenetin forms two trimethyl ethers, one yellow and the other orange.³ Barton and his collaborators showed by oxidative procedures that, on the basis of constitution (IV) for atrovenetin, the yellow and orange trimethyl ethers have to be allotted constitutions (VI) and (VII), respectively.⁸

TABLE 2.

Atomic co-ordinates and temperature factors.

(Origin of co-ordinates on two-fold screw axis.)

Atom	x/a	y/b	z c	B	Atom	x a	y/b	z/c	B
C(1)	0.3160	0.6686	0.3093	4.90	C(1')	0.8152	0.3302	0.3052	4.90
C(2)	0.3075	0.6592	0.3895	4.55	C(2')	0.8015	0.3373	0.3882	4.55
C(3)	0· 33 09	0.5455	0.4319	4.68	C(3')	0.8243	0.4582	0.4410	4.68
C(4)	0.3928	0.3229	0.4426	4.72	C(4')	0.8875	0.6894	0.4452	4.72
C(5)	0.4297	0.2084	0.3993	4.78	C(5′)	0.9356	0.7857	0.4089	$4 \cdot 42$
C(6)	0.4427	0.2258	0.3095	4.42	C(6′)	0.9479	0.7753	0.3278	$4 \cdot 42$
C(7)	0.4136	0.3378	0.1800	4.68	C(7')	0.9152	0.6631	0.1828	4.68
C(8)	0.3911	0.4910	0.0402	4.42	C(8')	0.8945	0.5184	0.0356	4.48
C(9)	0.3382	0.6299	0.0312	4.42	C(9')	0.8957	0.3461	0.0201	4.55
O(10)	0.3402	0.6702	0.1222	5.15	O(10')	0.8440	0.3265	0.1220	5.15
C(11)	0.3621	0.5709	0.1796	4.90	C(11')	0.8597	0.4410	0.1698	4.72
C(12)	0.3496	0.5619	0.2611	4.68	C(12')	0.8463	0.4347	0.2606	4.48
C(13)	0.3782	0.4411	0.3023	4.42	C(13')	0.8767	0.5519	0.3101	$4 \cdot 42$
C(14)	0.3654	0.4413	0.3970	4.37	C(14')	0.8634	0.5648	0.3955	$4 \cdot 42$
C(15)	0.4127	0.3304	0.2692	4.68	C(15')	0.9135	0.6659	0.2720	4.68
C(16)	0.3889	0.4498	0.1334	4.72	C(16')	0.8925	0.5400	0.1291	4.72
C(17)	0.3231	0.4132	-0.0104	4.42	C(17')	0.8492	0.6233	-0.0215	4.55
C(18)	0.4613	0.4941	0.0057	4.48	C(18')	0.9753	0.5699	-0.0004	4.48
C(19)	0.3540	0.7302	-0.0238	4.72	C(19')	0.8558	0.2757	-0.0343	$4 \cdot 42$
C(20)	0.2822	0.7997	0.2554	4.68	C(20')	0.7785	0.5060	0.2528	4.72
O(21)	0.3198	0.5416	0.5203	5.25	O(21')	0.8034	0.4638	0.5192	5.25
O(22)	0.3771	0.3058	0.5251	5.15	O(22')	0.8759	0.6994	0.5245	$5 \cdot 15$
O(23)	0.4586	0.0931	0.4573	5.12	O(23')	0.9642	0.8854	0.4584	5.15
C(24)	0.4256	-0.0463	0.4310	4.42	C(24')	0.9033	0.0024 *	0.4414	4.55
O(25)	0.4907	0.1336	0.2926	5.15	O(25')	0.9878	0.8818	0.2848	4.90
C(26)	0.5636	0.1616	0.2753	4.68	C(26')	0.0597 *	0.8688	0.3455	4.68
O(27)	0.4342	0.2312	0.1327	4 ·90	O(27')	0.9365	0.7701	0.1381	4.90
C(28)	0.3824	0.1066	0.1218	4.42	C(28')	0.8876	0.8859	0.1393	$4 \cdot 42$
Fe	0.3717	0.1822	0.7499	4.75	Fe'	0.8692	0.8253	0.7489	4.75
Cl(1)	0.3898	0.0318	0.6201	6.00	Cl(1')	0.8814	0.9599	0.6402	6 ∙00
Cl(2)	0.3345	0.0602	0.8856	6.00	Cl(2')	0.8346	0.9383	0.8535	6.00
Cl(3)	0.2792	0.3302	0.7045	5.50	Cl(3')	0.7771	0.6685	0.7022	5.50
Cl(4)	0.4781	0.2898	0.7789	6 ∙00	Cl(4')	0.9767	0.7126	0.7797	5.75

* It is necessary to add a full unit cell translation to these co-ordinates to obtain a complete molecule.

⁷ Barton, de Mayo, Morrison, Schaeppi, and Raistrick, Chem. and Ind., 1956, 552.

⁸ Barton, de Mayo, Morrison, and Raistrick, Tetrahedron, 1959, 6, 48.

The argument for the orientation of the ether ring in atrovenetin being as in (IV) is invalid if a skeletal rearrangement occurs during the nitric acid degradation of atro-

FIG. 1. The arrangement of molecules in the crystal as viewed in projection along the b-axis.

FIG. 2. The final three-dimensional electrondensity distribution for atrovenetin orange trimethyl ether ferrichloride shown by means of superimposed contour sections drawn parallel to (010). Contour interval leÅ⁻³, starting at the two-electron line, except around the iron and chlorine atoms where the interval is 3eÅ⁻³.

venetin. The possibility of such a rearrangement was suggested by Professor R. B. Woodward and it therefore appeared desirable to determine the molecular structure of atrovenetin by an X-ray crystal-structure analysis of an atrovenetin derivative. Accordingly, Professor D. H. R. Barton and Dr. G. A. Morrison very kindly made available to us

crystals of the ferrichloride salts of the yellow and orange trimethyl ethers. Preliminary diffraction photographs of these derivatives showed that more extensive X-ray data could be recorded for the orange salt and we chose it for detailed study.

By employing the Patterson superposition method⁹ followed by the usual phasedetermining heavy-atom method ¹⁰ we were able to effect a direct determination of the crystal structure. The crystals are monoclinic, space group $P2_1$, with four $C_{22}H_{25}O_6FeCl_4$ groups in the unit cell. The asymmetric crystal unit consists of two $C_{22}H_{25}O_6FeCl_4$ groups which, though formally independent, are arranged as if related closely, but not exactly, by a glide plane perpendicular to b and a majority of the atoms in the unit cell conforms approximately to the symmetry of the space group $P2_1/a$. This feature helped the rapid elucidation of the chemical structure but severely hindered the refinement of atomic positions (cf. the X-ray analysis of cephalosporin C by Hodgkin and Maslen 11). The progress of the analysis is summarized in Table 1.

Our results define the constitution of the ferrichloride as (VIII) and atrovenetin has therefore to be assigned structure (V) with the orientation of the ether ring opposite to that suggested earlier. The skeletal rearrangement necessarily involved in the formation of the phenolic degradation product (III) may proceed through an intermediate (IX), as indicated.

The arrangement of the molecules in the crystal as viewed in projection along the *b*-axis is shown in Fig. 1. The effect of the pseudo-glide is clearly visible in this Figure. The final three-dimensional electron-density distribution is shown in Fig. 2 as superimposed contour sections drawn parallel to (010) and covering the region of the two molecules in the asymmetric crystal unit; the corresponding atomic arrangement is explained in Fig. 1. Up to O(10) the numbering system is that given by Patterson, Capell, and Walker ¹² for 7*H*-phenaleno-[2,1-d]-oxazole. After O(10) the numbering is arbitrary.

The greatest deviations from positions related by the pseudo-glide occur at C(9), C(17), C(18), C(24), C(26), and C(28). The ferrichloride anions and the planar portions of the organic cations, on the other hand, show only slight deviations. The difficulty of determining the proper displacements from the higher symmetry accounts for the rather high final value of the average discrepancy between measured and calculated structure amplitudes (R = 21.4%) and necessarily severely limits the accuracy with which the atomic coordinates (see Table 2) and the various interatomic distances and valency angles (see Table 3) have been determined. Theoretical and practical aspects of the problems inherent in the refinement of a pseudo-symmetric crystal structure have been discussed by Srinivasan¹³ and Rae and Maslen.¹⁴ There appears to be no completely satisfactory procedure.

It is not easy to obtain a true estimate of the errors in the various atomic co-ordinates. Standard accuracy calculations ¹⁵ are not strictly valid in the present case and have therefore not been carried out. A more realistic idea of the errors may be obtained by comparing measurements of corresponding bonds and valency angles in the two molecules (see Table 3). The overall root-mean-square deviations are 0.11 Å for the bond lengths and 11° for the bond angles. For the averaged dimensions we may divide by $\sqrt{2}$ and give 0.08 Å and 8° as reasonable estimates of the standard deviations.

The average aromatic carbon–carbon bond length in the atrovenetin molecules is 1.40 Å with a root-mean-square deviation of 0.06 Å. Because of the pseudo-symmetry the other

⁹ Robertson and Beevers, Acta Cryst., 1951, 4, 270.
¹⁰ Robertson and Woodward, J., 1937, 219; 1940, 36; Sim, in "Computing Methods and the Phase Problem in X-ray Crystal Analysis," ed. Pepinsky, Robertson, and Speakman, Pergamon Press, Oxford, 1961, p. 227.

Hodgkin and Maslen, Biochem. J., 1961, 79, 393.
 Patterson, Capell, and Walker, "The Ring Index," 2nd edn., 1960, p. 589.

¹³ Srinivasan, Acta Cryst., 1961, **14**, 1163.

¹⁴ Rae and Maslen, Acta Cryst., 1963, 16, 703.

¹⁵ Cruickshank, Acta Cryst., 1949, 2, 65.

TABLE 3.

Interatomic distances (Å) and angles.

Intramolecular bonded distances

	lst	2nd			lst	2nd	
	molecule	molecule	Average		molecule	molecule	Average
C(1) - C(2)	1.28	1.35	1.32	C(8) - C(17)	1.52	1.50	1.51
C(1) - C(12)	1.44	1.37	1.40	C(8) - C(18)	1.37	1.63	1.50
C(1) - C(20)	1.59	1.55	1.57	C(9) - O(10)	1.47	1.52	1.50
C(2) - C(3)	1.32	1.46	1.39	C(9) - C(19)	1.35	1.57	1.46
C(3) - C(14)	1.32	1.46	1.39	O(10) - C(11)	1.34	1.35	1.35
C(3) - O(21)	1.42	1.32	1.37	C(11) - C(12)	1.32	1.47	1.40
C(4) - C(5)	1.48	1.41	1.45	C(11) - C(16)	1.48	1.31	1.40
C(4) - C(14)	1.40	1.47	1.44	C(12) - C(13)	1.42	1.44	1.43
C(4) - O(22)	1· 3 6	1.28	1.32	C(13) - C(14)	1.48	1.39	1.44
C(5) - C(6)	1.46	1.32	1.39	C(13) - C(15)	1.37	1.44	1.41
C(5) - O(23)	1.49	1.30	1.40	O(23) - C(24)	1.50	1.54	1.52
C(6) - C(15)	1.27	1.45	1.36	O(25) - C(26)	1.33	1.46	1.40
C(6) - O(25)	1.26	1.45	1.36	O(27) - C(28)	1.50	1.41	1.46
C(7) - C(15)	1.40	1.40	1.40	Fe-Cl(1)	$2 \cdot 19$	$2 \cdot 17$	2.18
C(7) - C(16)	1.35	1.48	1.42	Fe-Cl(2)	$2 \cdot 19$	$2 \cdot 12$	2.16
C(7) - O(27)	1.34	1.38	1.36	Fe-Cl(3)	$2 \cdot 19$	$2 \cdot 25$	$2 \cdot 22$
C(8) - C(9)	1.62	1.68	1.65	Fe-Cl(4)	2.09	$2 \cdot 13$	2.11
C(8) - C(16)	1.51	1.48	1.50				

Intramolecular non-bonded distances

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			lst	2nd		lst	2nd
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			molecule	molecule		molecule	molecule
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C(4) \cdot \cdot \cdot C(24)$		3.63	3.02	$C(17) \cdots C(28)$	3 ·69	3.58
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C(5) \cdots C(26)$		$3 \cdot 20$	2.57	$C(18) \cdots C(19) \dots$	2.93	3.51
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C(6) \cdot \cdot \cdot C(24)$		$3 \cdot 28$	2.98	$C(18) \cdots O(27) \ldots$	3.30	2.97
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C(6) \cdot \cdot \cdot C(28)$		3.21	3.19	$C(18) \cdots C(28)$	4.45	4.15
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C(7) \cdot \cdot \cdot C(26)$		3.28	3 ∙88	$O(22) \cdot \cdot \cdot C(24) \ldots$	3.82	3.27
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C(8) \cdots O(27)$		2.95	2.91	$O(23) \cdots C(26) \ldots \ldots$	3 .60	2.55
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C(8) \cdots C(28)$		3.94	3.92	$O(25) \cdots C(24) \ldots$	3 ·09	$3 \cdot 21$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C(15) \cdot C(26)$		3.04	3.27	$C(24) \cdots C(26) \ldots \ldots$	4.12	3.47
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C(15) \cdot \cdot C(28)$		3.16	2.97	$O(25) \cdots C(28)$	3.07	2.68
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C(16) \cdot C(28)$		3.33	3.36	$C(26) \cdots O(27)$	3.02	3.85
$C(17) \cdot O(27)$ 3.27 3.02	$C(17) \cdot C(19)$	·····	3.13	3·38	$C(26) \cdots C(28)$	3.72	4.07
	$C(17) \cdot O(27)$		3.27	3.02			

Intermolecular distances (<4 Å)

					• •			
O(22')	$\cdots Cl(1')$	3 ·10	$Cl(2') \cdot \cdot \cdot C(12)_{II}$	3.63	$C(26) \cdots C(20')$	3.75	$C(4) \cdots O(23)_{II}$	3 ·84
C(24')	$\cdots O(21')_{I}$	3·10	$C(24) \cdots Cl(1)$	3.64	$Cl(4) \cdots C(26)_{II}$	3.75	$C(14) \cdots O(23)_{II}$	3.84
C(24')	$\cdots Cl(1')$	3.21	$O(22) \cdot \cdot \cdot C(24)_{II}$	3.65	$C(2') \cdots Cl(1)_{TT}$	3.75	$O(10') \cdot \cdot \cdot Cl(2)_{II}$	3.84
O(22)	$\cdots Cl(1)$	3.27	$C(19) \cdots O(10')_v$	3.66	$C(14') \cdot \cdot \cdot Cl(3)_{II}$	3.75	$Cl(2') \cdots C(l6)_{II}$	3.84
O(23')	$\cdots Cl(1')$	3.41	$O(21) \cdots O(3)$	3.67	$Cl(1') \cdots C(3)_{II}$	3 ·75	$Cl(3)' \cdots C(20')_{II}$	3.85
O(23)	$\cdots Cl(1)$	3.42	$Cl(3') \cdots C(l5)_{II}$	3.67	$C(20) \cdots C(24)_{rv}$	3.76	$Cl(2') \cdots C(17)_{II}$	3.86
O(22')	$\cdots Cl(3')$	3.43	$C(18) \cdots C(28)_v$	3 ⋅68	$C(24') \cdots C(3')_{I}$	3.77	$C(2)$ · · · · $O(21')_{II}$	3.87
Ç(11)	$\cdots Cl(4)_{II}$	3.45	$C(4)$ · · · $C(24)_V$	3 ⋅69	$Cl(3')' \cdots C(4)_{II}$	3.77	$C(6') \cdots Cl(3)_{II}$	3.88
O(22)	$\cdots Cl(3)$	3.45	$C(15') \cdots Cl(3)_V$	3.71	$Cl(3') \cdots C(6)_{II}$	3.77	$C(24') \cdots O(22')_{H}$	3.88
O(10)	$\cdots Cl(4)_{\Pi}$	3.48	$Cl(2') \cdots C(19')_{VI}$	1 3·71	$O(21) \cdots O(23)_{II}$	3.78	$C(24') \cdots Cl(4')_{11}$	3.88
C(11')	$\cdots Cl(2)_{II}$	3 ·48	$Cl(3') \cdots C(5)_{II}$	3.71	$C(13') \cdots Cl(3)_{II}$	3.78	$O(21) \cdots C(2')_{II}$	3.90
C(18')	$\cdots C(19')_{III}$	3.49	$Cl(4') \cdots C(18')_{VI}$	3.71	$C(12) \cdots Cl(4)_{TI}$	3.79	$C(5')$ · · · $Cl(3)_{II}$	3.90
C(2) ·	$\cdots C(24)_{IV}$	3.51	$Fe^{-1} \cdots O(22)^{(1)}$	3.72	$C(20) \cdots Cl(3')_{II}$	3.79	$C(16') \cdots Cl(2)_{II}$	3.91
O(21')	$\cdots Cl(3')$	3.56	$C(4') \cdots Cl(3)_{II}$	3.72	$Cl(2') \cdots O(10)_{II}$	3.79	$C(28') \cdots C(17')_{v}$	3.91
Cl(4) ·	$\cdots O(25)_{\mathrm{H}}$	3.57	$C(1)$ · · · $C(24)_{IV}$	3.73	$Cl(3') \cdots C(14)_{II}$	3.79	$C(18)' \cdots Cl(2)_{II}$	3.93
Cl(2')	$\cdots C(11)_{II}$	3.57	$\vec{Fe'} \cdots \vec{O(22')}$	3.73	$C(3)' \cdots O(23)_{II}$	3.82	$O(21) \cdots C(24')$ viii	3.94
C(9) ·	$\cdots C(19')_{\mathbf{v}}$	3 ⋅60	$Cl(1') \cdots C(2)_{II}$	3.73	$C(19) \cdots C(19')_v$	3.82	$C(20) \cdots C(19')_v$	3.95
C(12')	$\cdots Cl(2)_{II}$	3 ∙60	$Cl(3') \cdots C(13)_{II}$	3.73	$C(3')' \cdots C(1)_{II}$	3.82	$O(22) \cdots O(23)_{II}$	3.95
O(10)	$\cdots C(19')_{v}$	3.61	$O(21) \cdots C(26)_{II}$	3.74	$C(28') \cdots C(18')_{111}$	3.82	$C(15) \cdots Cl(1)_{11}$	3.96
O(18')	··· C(9')	3.61	$C(18) \cdots O(27)_v$	3.75	$C(26)' \cdots Cl(1)_{II}$	3.83	$O(27') \cdots C(18')_{III}$	3.96
Cl(2')	$\cdots C(17')_{VI}$	3 ∙62			. ,		, <i>,</i> , , 	
	, ,,,							

The subscripts refer to the following positions:

Ι	$2-x, \frac{1}{2}+y, 1-z$	IV	x, 1 + y,	Z	VII	x, 1 + y, 1 + z
II	$1 - x, \frac{1}{2} + y, 1 - z$	V 1	$1 - x, \frac{1}{2} + y,$	- z	VIII	$1 - x, -\frac{1}{2} + y, 1 - z$
III	$2-x, \frac{1}{2}+y, -z$	VI	x, y, 1	+z		

TABLE 3. (Continued.)

Valency angles

	lst	2nd			lst	2nd	
	molecule	molecule	Average		molecule	molecule	Average
C(2)C(1)C(12)	124°	125°	125°	C(9)O(10)C(11)	115°	102°	109°
C(2)C(1)C(20)	120	116	118	$O(10)\dot{C}(11)\dot{C}(12)$	129	117	123
C(12)C(1)C(20)	116	117	117	O(10)C(11)C(16)	109	114	112
C(1)C(2)C(3)	119	121	120	C(12)C(11)C(16)	121	129	125
C(2)C(3)C(14)	124	113	119	C(1)C(12)C(11)	125	130	128
C(2)C(3)O(21)	116	118	117	$C(1)C(12)C(13) \dots$	118	116	117
C(14)C(3)O(21)	120	128	124	C(11)C(12)C(13)	116	114	115
C(5)C(4)C(14)	121	118	120	C(12)C(13)C(14)	113	120	117
C(5)C(4)O(22)	118	120	119	C(12)C(13)C(15)	126	122	124
C(14)C(4)O(22)	121	121	121	C(14)C(13)C(15)	121	117	119
C(4)C(5)C(6)	119	121	120	C(3)C(14)C(4)	124	116	120
C(4)C(5)O(23)	114	117	116	C(3)C(14)C(13)	122	123	123
C(6)C(5)O(23)	127	123	125	$C(4)C(14)C(13) \dots$	114	121	118
C(5)C(6)C(15)	118	123	121	C(6)C(15)C(7)	119	124	122
C(5)C(6)O(25)	107	122	115	$C(6)C(15)C(13) \dots$	126	119	123
C(15)C(6)O(25)	134	115	125	C(7)C(15)C(13)	115	118	117
C(15)C(7)C(16)	123	123	123	C(7)C(16)C(8)	134	130	132
C(15)C(7)O(27)	123	127	125	C(7)C(16)C(11)	118	114	116
C(16)C(7)O(27)	114	110	112	C(8)C(16)C(11)	108	116	112
C(9)C(8)C(16)	103	91	97	$C(5)O(23)C(24) \dots$	115	104	110
C(9)C(8)C(17)	89	138	114	$C(6)O(25)C(26) \dots$	123	92	108
C(9)C(8)C(18)	117	111	114	C(7)O(27)C(28)	120	110	115
C(16)C(8)C(17)	105	115	110	Cl(1)Fe Cl(2)	105	111	108
C(16)C(8)C(18)	121	115	118	Cl(1)Fe Cl(3)	111	106	109
C(17)C(8)C(18)	117	89	103	Cl(1)Fe $Cl(4)$	107	109	108
C(8)C(9)O(10)	101	103	102	Cl(2) Fe Cl(3)	110	110	110
C(8)C(9)C(19)	120	109	115	Cl(2) Fe $Cl(4)$	115	114	114
O(10)C(9)C(19)	116	110	113	Cl(3)Fe $Cl(4)$	109	106	108

carbon-carbon bond lengths are less reliable. The average sp^2 -carbon-oxygen and sp^3 carbon-oxygen single bond lengths are 1.36 and 1.47 Å, respectively, in good agreement with values reported for other molecules.¹⁶

In the ferrichloride anions d(Fe-Cl) = 2.17 Å with r.m.s. deviation of 0.04 Å, while in tetraphenylarsonium ferrichloride the corresponding distance is 2.19 + 0.03 Å.¹⁷ On the basis of ionic radii the expected length of an ionic Fe^{III}-Cl bond (Fe^{III} in octahedral coordination) is about 2.46 Å, close to the value of 2.48 Å in solid ferric chloride; ¹⁸ with allowance for the contraction in ionic radius of iron on changing from octahedral to tetrahedral co-ordination, a value of about 2.4 Å should apply to the ferrichloride anion. It appears that covalent bonding may play an important role in the ferrichloride anion. A difference of about 0.2 Å between the sum of the ionic radii (2.56 Å) and the experimental Fe^{II}-Cl distance (2.38 Å) is also found in ferrous chloride tetrahydrate.¹⁹

The intermolecular approach distances (see Table 3) are all greater than 3 Å. It is possible that the contacts $O(22) \cdots Cl(1)$ and $O(22') \cdots Cl(1')$ represent hydrogen bonds; the distances involved are 3.27 and 3.10 Å, not appreciably different from values reported for OH \cdots Cl hydrogen bonds in isoleucine hydrochloride monohydrate (3.07 Å) 20 and adenine hydrochloride (3.12 Å),²¹ while the angles Cl(1)O(22)C(4) and Cl(1')O(22')C(4') are 133 and 129°, respectively. The other intermolecular contacts correspond to normal van der Waals interactions.

²¹ Broomhead, Acta Cryst., 1948, 1, 324; Cochran, ibid., 1951, 4, 81.

¹⁶ Cochran, Acta Cryst., 1953, 6, 260; Hassel and Viervoll, Acta Chem. Scand., 1947, 1, 149; Dunitz and Rollett, Acta Cryst., 1956, 9, 327; McCallum, Robertson, and Sim, Nature, 1959, 184, 1863; Brown and Sim, J., 1963, 1050.

¹⁷ Zaslow and Rundle, J. Phys. Chem., 1957, **61**, 490. ¹⁸ Gregory, J. Amer. Chem. Soc., 1951, **73**, 472.

¹⁹ Penfold and Grigor, Acta Cryst., 1959, 12, 850.

²⁰ Trommel and Bijvoet, Acta Cryst., 1954, 7, 703.

Crystal Data.—Atrovenetin orange trimethyl ether ferrichloride, $C_{22}H_{25}O_6FeCl_4$; $M = 582\cdot8$; m. p. $151-152^\circ$. Monoclinic, $a = 17\cdot04$, $b = 9\cdot69$, $c = 15\cdot66$ Å, $\beta = 96^\circ 35'$, U = 2669 Å³, $D_m = 1\cdot526$ g. cm.⁻³ (by flotation), Z = 4, $D_c = 1\cdot510$ g. cm.⁻³, space group $P2_1-C_2^2$. Absorption coefficient for X-rays ($\lambda = 1\cdot542$ Å) $\mu = 91$ cm.⁻¹. Total number of electrons in the unit cell = F(000) = 1196.

Experimental Measurements.—Rotation, oscillation, and Weissenberg photographs were taken with copper- K_{α} ($\lambda = 1.542$ Å) radiation and precession photographs were taken with molybdenum- K_{α} ($\lambda = 0.7107$ Å) radiation. The cell dimensions were derived from the precession photographs. For the intensity measurements small crystals, completely bathed in a uniform X-ray beam, were employed and no corrections for absorption were applied. The intensities were estimated visually from multiple-film equatorial and equi-inclination upperlayer Weissenberg photographs obtained from crystals rotated about the *b*-axis. The usual correction factors (Lorentz, polarization, and rotation ²²) were applied and 2360 independent

structure amplitudes derived. The absolute scale of each layer of reflexions was obtained at a later stage by correlation of the $|F_o|$ values with the calculated structure amplitudes, $|F_c|$.

Analysis of the Structure.—There are four molecules of atrovenetin orange trimethyl ether ferrichloride in the unit cell. Since the space group $P2_1$ has two equivalent positions $(x, y, z, and \bar{x}, \frac{1}{2} + y, \bar{z})$ it follows that the asymmetric crystal unit consists of two molecules.

In the *h*0*l* zone, reflexions with *h* odd are either absent or very weak, suggesting the presence of a pseudo-glide in the direction of the *a*-axis. As the atrovenetin molecule has an asymmetric centre at C(9) we assumed at this stage that the pseudo-glide probably only involved the ferrichloride anions. If the co-ordinates of one of the iron atoms in the asymmetric unit are (x, y, z)those of the atom related by the pseudo-glide are $(x + \frac{1}{2}, \overline{y}, z)$. The vectors between the four iron atoms in the unit cell are then: (a) $\frac{1}{2}$, 2y, 0; (b) 2x, $\frac{1}{2}$, 2z; (c) $\frac{1}{2} + 2x$, $\frac{1}{2} + 2y$, 2z.

We were unable to locate the iron atoms unambiguously from an examination of the sharpened two-dimensional Patterson function and we therefore computed the three-dimensional Patterson function P(UVW). The section at $V = \frac{1}{2}$ is shown in Fig. 3. A detailed consideration of this section, of the line $P(\frac{1}{2}, V, 0)$ which showed a large peak at about V = 9/24, and of the section P(U, 3/24, W) enabled us to obtain the initial co-ordinates of the iron atoms as

	x a	y/b	z c
Fe(1)	 0.374	0.179	0.751
Fe(2)	 0.874	-0.129	0.751

In the application of the phase-determining heavy-atom method ¹⁰ the effectiveness of the heavy atom (or atoms) is usually measured by the ratio $\Sigma f_{H^2}/\Sigma f_{L^2}$, where f_H and f_L are the scattering factors of the heavy and light atoms, respectively.²³ The ratio of the square of the atomic number of iron to the sum of the squares of the atomic numbers of the chlorine, carbon, and oxygen atoms is 0.29. We considered, therefore, that calculations based solely on the iron atoms would give rather unreliable phase constants, $\alpha(hkl)$, and a subsequent electron-density distribution which would be difficult to interpret. In fact, when structure factors were calculated on the basis of the iron atoms alone the average discrepancy between calculated and observed structure amplitudes, R, was 73%.

22 Tunell, Amer. Min., 1939, 24, 448.

²³ Sim, Acta Cryst., 1957, 10, 177, 536; see also ref. 10.

TABLE 4.

Measured and calculated values of the structure factors.

h	k	l	F _c 1	Г _с	α	1	i.	t l	· 1	F_0	F_{c}	α		h	k	l	F_{o}	F_{c}	α	h	k	l	F_{o}	F_{c}	α
0	0	34 56	30 108 1 56 10	17 00 49 3	0 0 180 180					11 52 24	11 78 37 24	180 180 0 180				2 4 59	22 13 9 17	21 3 1 9	0 0 180			5678	86 56 53 48	85 53 41 43	95 275 83 259
		7 8 9	136 1 78 1 12	22 80 8	0 0 180			10		52 32 53	28 77 36	0 180		10	U	-15 -14 -11	25 10 10	10 13 4	0			10 11 12	02 18 46 14	48 12 45	274 302 101 296
		11 12 14	14 18 14	21 21 3	180 180 180 180		5	0 -14 -10		18	25 3	0000				- 8 - 7 - 6	44 49 17	43 52 21	180 180 0	1	1	-12 -11 -10	15 16 25	19 14 24	187 179 341
1	0	16 18 -11	14 17 8	8 12 6	0 180 0			- 8		8	10 8 16	180 0 180				- 5 - 3 - 2	44 45 25	36 37 37	0 180 180	1	1	- 9 - 8 - 7	46 67 76	34 58 80	5 182 192
		-10 - 9 - 7	11 20 21	10 1 16	180 180 180			- 4	2	16 9 27	18 9 27	180 180 180				- 1 0 1	70 13 85	46 6 107	0 180 180			- 6 - 5 - 4	69 99 68	73 97 71	358 356 190
		- 5	11 21 7	6	180			2		2	10 8 10	180 180 180				2 3 5 7	72 43 12	68 47 6	0 180 0			- 2	109 48	128 40	182 0 351 359
		4 5 7	14 23 10	18 10 13	180 0 180			4		.8 .0 .2	11 1 10	0 180 0				8 9 13	8 8 10	2 8 3	0 180 180			4 06	11 26 55	18 36 56	193 214 174
_	•	8 10 11	12 23 17	3 13 5	180 180 180		5 6	0 9 10 0 -13)) 5]	39.4	6 1 13	0 0 180		11	0	-11 - 7 - 3	10 10 14	10 1 14	0 180 180			7 8 9	17 22 41	13 33 32	18 348 166
2	U	-19 -17 -16	25 10	9 11 17 37	180			-11		59	26 19 64	180 0 180				- 2 0 1 2	24 23	13	180 0			10 11 13	15 24 16	5 17 23	97 330 180 201
		-13 -12 -11	20 12 26	16 13 27	0 180 180					9 1 2	62 54 15	0 0 180		12	0	-12 - 8	7 18 41	2 13 52	180 180 180	2	1	-16 -14 -12	14 22 12	6 20 11	282 270 253
		-10 - 9 - 8	48 136 1 85	34 39 74	180 0 180			- 4		57 10 39	39 33 75	0 180 0				- 6 - 5 - 4	44 17 81	43 16 72	0 180 180			-11 -10 - 9	15 41 23	7 48 26	61 96 259
		- 6 - 5 - 4	39 89 73	18 30	0000			-		58	59 69 62	0 0 180				- 2 - 1 0	30 15 34	30 33 41	180 0 180			- 7	22 41 31 9	45 38 34 3	103 102 165
		- 3 - 2 2	160 16 35 24	57 34 15	180 180 0			4		52 52 16	48 34 48	180 0 0				135	33 28 25	34 25 24	0 180 0			- 4 - 3 - 2	133 11 78	125 7 69	91 203 87
		3456	110 12 40 2 28 5	21 22 36	0 180 0			1		25 64 11	25 68 13	180 0 180		13	0	6 7 8	13 11 13	10 34 12	180 0 0			- 1 0 1	29 59 66	30 78 81	274 96 88
		789	10 1 44 4 43 3	14	180 180 0 180		7	11		8 30 44	13 42 3	0 0 180		13	0	- 6 - 0 5	19 18 11 10	2	0 180 0			2345	59 37 18	50 54 18	83 120 184
		10 11 13	22 1 31 19 2	19 54	0 0 180				3	14 15 10	23 23	0000		14	0	-13 -12 -11	25 13 24	18 16 19	180 180 0			6 7 8	19 16 37	10 13 32	257 120 248
3	0	15 17 -16	16 10 9	556	180 180 180			-	4 33 : 2 1	23 10 7	15 15 3	0 180				-10 - 9 - 7	27 37 28	32 48 30	0 180 0			9 10 11	28 63 16	17 64 18	274 89 240 266
3	0	-13 -10 - 9	17 15 23	8 6 7	180 0 0				1	25 20 21	7	180 180 180				- 5 - 3	41 28 33	40 27 22	180 180 0 180	3	1	13 14 -14	13 16 23	12 13 20	287 258 350
		- 8 - 6 - 4	9 10 10	7 19 2	0 0 180				5 5	25 14 10	13	0 5 180 5 0				0 1 2	18 17 33	1 6 39	180 0 180			-13 -12 -11	10 16 15	19 16 18	197 172 346
		- 2	7 7 25	18	0000		8	0 -1 -1	0 4 1	19 20 10	12	180		16	0	4 56	10 12 12	13 22 16	0			-10 - 9 - 8	58 63 85	55 57 96	7 177 179
		2 76	14 5 11	17 2 4	0 0 180			-	9 8 7	33 43 51	37 41 52			1)	U	- 9	16 15 14	474	0			- 6 - 5 - 4	147 45 74	134 35 79	2 171 188
		7 9 10	20 1 6 1 14	10	0000			-	6 5 4 3	12 23 12	10 26 11			16	0	-11 -10 - 9	9 12 11	14	180 0 0	3	1	- 3 - 2 - 1	103 85 87	95 88 100	11 5 176
4	0	-18 -16 -15	22 24 13	12 19 12	0 180 180			-	2 1 0	11 42 62	10))			- 21	16 16 16	199	180 180 180			1 2 3	137 17 42	193 13 52	359 14
		-14 -13 -12	31 26 9	28 33	0 0 180				1 2 1 3	12 25 23	16 141 32)))	17 18	0 0	- 8 - 6 -12	13 11 10	1	180 0 180			4 6 7	34 52 30	27 47 22	339 174 211
		-10 - 9	91 26 127 12	92 9	180 0 180		8	0	4 6 8 9	68 16 27	100 72 18 26	2 180 3 (5 180)))			-11 - 9 - 8	23 15 11	11	180 3 0 5 180			8 9 10	19 25 17 16	15 23 14	38 321 163
		- 7 - 6 - 4	78 92 73	78 97 58	180 0 0		-	נ נ נ	.0 1 2	33 19 12	4 2 12					- 4 - 3 - 2	16 10 11	21	180 180 5 0	4	1	13 15 -13	13 27 13	12 25 9	337 178 81
		- 3 - 2 - 1	35 72 74	21 79 77	180 180 180		9	ر 1- ٥ -	4 1 8 6	9 15 14	e	7 180 5 0 5 0)))	20	0	- 1 - 4 - 2	11 13 10	12	2 0 180 7 0			-10 - 9 - 8	11 47 19	12 42 2	268 263 246
		0. 1 2 3	25 2 24 3 89 5	27 18 37	0 0 180				5 3 1	12 8 29	10)))	0	ı	0 2 2 7	12 9 45	13 16 46 36	258 286			- 7 - 5	10 30 30	27 22	105 79 92 261
		á	38	3i	ō				1	15	2	4 180)			4	12	13	216			- 3	ić	-9	82

Paul and Sim:

h	k l	Fo Ec a	h k l	F_o F_c α	h k l Fo Fc a	h	k l	F_o F_c α
	- 2101234560	37 20 280 79 97 272 73 69 274 234 315 89 87 83 276 48 50 287 14 9 104 26 18 79 11 6 358	8 1 - 3 - 1 2 3 4 5 6	24 32 83 40 34 94 36 22 196 32 44 262 36 54 96 19 28 127 16 13 200 14 27 88 16 26 257	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4	6 7 8 9 10 11 12 13 2 -16	31 24 259 34 31 281 79 95 11 4 41 46 275 24 25 29 97 11 4 25 29 97 11 4 249 8 8 222 7 1 346
5	8 9 10 11 12 1 -16 -13	39 50 92 18 22 80 24 21 258 26 20 262 13 9 83 17 13 17 25 24 181 26 28 2	9 1 -13 -12 - 8 - 7 - 6 - 5	14 16 262 13 9 158 15 15 171 25 32 176 24 16 5 41 42 22 33 29 348 52 43 161	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-14 -13 -12 - 9 - 8 - 7 - 6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	-11 -10 - 9 - 8 - 7 - 6 - 5	32 45 351 21 19 1 79 42 49 181 82 73 356 28 18 172 68 45 181 26 23 175	- 3 - 2 - 1 0 1 2 3	44 41 176 28 11 51 71 86 4 63 66 187 21 19 134 69 74 358 34 39 354	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		- 5 - 4 - 3 - 2 - 1 0 1	28 32 148 107 112 358 27 30 173 38 19 3 42 22 36 71 80 179 8 6 292
	- 4 - 3 - 2 - 1 0 1 2	33 29 344 20 6 216 27 5 14 89 70 349 47 67 162 102 116 190 23 21 138	4 5 6 7 8 10 1 -11 -10	48 67 186 22 31 171 34 28 341 18 28 23 14 9 199 18 21 254 20 25 87	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2 3 4 56 7 8 9	93 105 355 14 26 179 49 40 352 10 12 273 37 31 176 19 13 6 19 13 290 22 17 346
5	4 5 6 7 1 8 9 10	37 40 0 29 39 18 20 20 160 14 25 211 20 18 11 22 18 4 46 61 184	- 8 - 7 - 6 - 4 - 3 - 1 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5	10 11 14 2 -16 -14 -12 -11	16 6 237 21 19 359 13 16 164 12 4 109 14 15 99 17 13 281 9 13 247
6	11 12 13 14 1 -16 -14 -10	10 11 141 24 39 359 13 16 358 15 16 178 15 10 87 19 21 85 16 7 52	2 3 4 11 1 -12 -11 -10 - 9	21 29 89 32 31 246 23 33 269 13 3 45 15 6 28 28 26 12 26 33 180	5 56 59 99 6 39 43 103 7 62 62 283 8 45 46 274 9 52 57 99 10 28 34 79 11 41 49 274		-10 - 9 - 8 - 7 - 6 - 5 - 4	13 12 276 36 29 84 26 30 105 47 44 273 39 41 267 34 40 88 48 21 101
		21 15 90 83 72 94 54 50 270 34 34 281 17 21 259 20 28 254 57 67 89 25 23 265	- 876 - 654 21 - 21	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5	- 2 - 2 2 - 1 2 3 4 5	20 12 42 93 90 270 99 109 90 25 17 269 25 25 273 57 71 93 33 34 83 9 14 201
	- 10 12 34 5	44 24 113 .29 30 99 48 57 270 41 59 275 18 18 75 34 41 83 14 24 58	2 2 3 4 5 11 1 7	37 51 178 46 50 9 25 23 357 41 48 178 38 34 173 33 36 347 14 12 213	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		7 8 9 10 11 12 13	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
7	6 11 1 -14 -13 -12 -11 - 9	35 44 78 12 25 76 33 30 175 16 9 42 27 10 299 16 13 178 37 33 5	12 1 -10 - 9 - 6 - 4 - 3 - 2 0	13 3 143 19 8 89 22 33 259 15 6 6 11 5 281 39 49 91 19 6 349	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6	2 -15 -14 -13 -12 - 9 - 8 - 7	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
		21 19 242 29 20 178 22 11 219 20 26 211 51 52 188 18 14 263 55 43 344 45 37 342	1 2 3 4 56 13 1 - 7	11 13 87 12 9 292 15 25 284 17 29 80 12 12 86 13 16 86 23 21 353 30 21 353	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		- 5 - 4 - 3 - 2 - 1	19 14 100 24 23 34 9 16 213 24 37 178 32 28 34 28 27 19 37 39 19 50 52 177
	0123456	42 55 350 104 106 188 57 58 179 35 31 337 52 55 352 41 47 161 19 19 201	- 6 - 5 - 4 - 3 - 1 0 14 1 -10 - 8	>0 >4 188 29 31 180 14 9 314 31 22 14 21 22 161 14 14 346 18 15 266 13 2 41	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		234 5678	31 32 131 12 30 161 24 11 178 36 55 177 29 39 12 45 59 7 23 26 184
8	7 8 9 10 11 13 1 -12	48 47 1 27 37 14 46 54 187 16 17 181 25 32 8 18 21 174 16 24 86	- 7 0 4 15 1 -11 -10 - 5 - 4	25 17 259 14 8 111 23 28 98 15 12 193 26 29 168 13 15 15 19 15 15 13 15 15 19 13 175	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7	9 12 13 15 2 -16 -15 -14	40 50 176 17 22 350 19 24 183 14 23 3 6 7 287 7 4 294 14 10 86
	-10 - 9 - 7 - 5 - 4	12 8 555 47 52 89 28 29 275 10 15 72 62 54 104 12 12 105	- 3 - 2 0 2 16 1 -10 - 9	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	0 76 94 92 1 136 162 87 2 118 118 268 3 130 120 270 4 16 27 76 5 30 40 111		-13 -12 -11 -10 - 9 - 8	29 14 75 15 13 50 25 15 261 32 31 82 20 26 84 24 25 268

h	k	1	F_{o}	Ec	α	h	k	l	F_{a}	F_{c}	ά		h	k	l	F_o	F_{c}	α	h	k	1	F_o	F _c α
		- 7	46 35	60 32	275 92			-12 -11	13 29	26	3 142 5 80		0	3	3 4	14 49	23 48	5 267 3 272	4	3 -	13 15	13 21	15 181 16 27 5
		- 5 - 4	75 4 1	86 41	86 260			-10 - 9	33 12	36 10	5 260				56	67 12	63 10	92 81		-	-13 -12	26 11	21 99 20 269
		- 2	54 54	24 48	309 102			- 8 - 7	24 12	24	96 5 18				7 8	78 8	60	275 298		-	·11 ·10	42 31	38 263 33 90
		- 1	40 90	40 82	87 271			- 5	26 17	27	7 265				9 10	16 7	16	109 5 294		-	· 9 · 8	8 18	15 245 11 111
		2	108	130	270 88			- 3	25 39	24	2 68				11 12	34 12	35	274 81		-	. 7	15 83	7 166 74 97
-	_	4	35	31	260 260			- 2	15 36	17	326				13	23	31 7	90 263		-	- 4	56 82	51 258 80 272
1	2	26	18	10	63			2	13	17	272		,	-	17	10	در 8	81		-	1	123	18 102 142 96
		8	11	4	254 336			2 4 5	19	27	258 90		T		-13	10	24	166			1	58	55 271
		10	14	13	122			67	9 14	10	243			-	-11	16	12	189			3	151	156 90
		12	17	16	273			8	13	11	103			-	· 8	4	16	351			56	103	119 272
8	2	15 -14	10 7	15 4	100 357			10 12	13 16	16	286 82			-	-6 -5	15 66	23	163			7	65 10	87 102 8 232
		-13 -12	19 32	17	180 167	12	2	-13 -12	20 24	13 19	5 349 5 348			-	• 4 • 3	84 36	73	353	4	3	9 10	11 19	6 4 23 118
		-11 -10	9 27	9 23	48 1			-11 -10	10 47	12 39	217 184			-	- 2 - 1	14 68	12 73	314 187			11 12	7 22	10 254 18 271
		- 9 - 8	22 12	22 15	148 335			- 8 - 7.	17 13	13 21	355 2				0 1	24 45	27 47	18 2 175	-	_	14 15	8 13	10 260 12 96
		- 7	27 18	22 19	357 176			- 4	28 28	20	169 358				3	14 102	12 85	222 192	5	- د -	15	14	6 213 15 353
		- 4	59 57	44 66	177			- 2	42	45	168				5	4) 53	42 52	18		-	12	23	19 184
		- 2	20	15	21			~ 1 0 2	16	21	21				7	40 27	30	177		-	10	22	14 356
			12	2	174	12	2	4 6	-10 -9 14	-18 15	352				9 10	10	9	201		-	87	49 16	42 354
		23	29 11	35 21	171 26			7 8	8 8	4	299 94				11 14	2i 9	28 7	3 193		2	6 5	14 12	11 315 5 138
		4 5	82 33	102 34	178 6	13	2	10 -13	. 8 8	4 8	12	2	2	3 -	-16 -14	17 29	15 29	93 272		-	4 3	81 43	76 174 35 0
		6 7	52 7	70 11	10 164			-10 - 8	7 11	10	82 293			-	.13 .12	21 21	21 21	68 85		-	2	37 26	19 9 24 339
		89	24 11	31 9	178 87			- 6	24 9	20	269			-	· 9	7 19	16	317 46			1	4) 50	50 5 64 349
		10	13	11	25 198			- 2	14	15	92 76			-	. 6	48	43	283			3	40 16 79	49 175 17 256
9	2	-15	16	10	97 321			- 2 - 1	14	20	290			-	4	65	56	97			56	19	28 339
		-10 - 8	16 23	3 31	359 274			0	9 22	14 31	83 203			-	. ź	33 46	45	278 98			7 8	19 8	16 339 11 166
		- 7 - 6	68 8	70 2	88 282			3 5	23 25	30 25	273				0	41 14	40	250 19			11 12	26	30 172 5 220
		- 5 - 4	39 35	30 32	274 280			6 7	10 11	15 11	279 82				23	41 35	38 36	267 260	6	3 -	16 15	8 7	2 222 11 91
		- 3	18 19	16 24	271	14	2	- 9	12 13	11	293				4	78 12	84 15	94 132		-	14	27 13	17 93 18 263
		0	62	14 59	265 78			- 7	20	21	168	:	2	3	о 7 8	85 18 65	92 17 69	272 95		-	10	20	12 232
		23	33	25	304			- 5	8	10	167				9 10	17 26	22	291 267		Ξ	7	9 67	8 212 68 01
		á	13	11	59 286			- 2 - 1	8 12	14 8	356				11 12	29 37	26 41	269 86		-	5 4	30 92	30 87 93 268
		6 10	17 13	28 12	96 93			0 1	28 10	34 8	179 165				14 15	- 8 - 8	16 5	275 22		-	3 2	42 111 1	34 274 38 93
		11 12	9 19	17 20	277 266	15	2	- 5	13 8	18	163 137	;	3	3 -	16 15	12	9 12	104		-	1 0	33 48	36 269 44 285
10	2	-13 -12	23 19	19 26				- 3	14	25	278			-	-14	22	18	347			1 2	18 84	21 242 98 88
10	2	-10	16	19	174			- 1	15	18	102			-	10	10	11	192			2 4 5	4	5 75
		- 8	25 11	6	124 195			ĩ	11	14	276			-	· 8 · 7	18 14	15 24	217			67	30	38 84 28 249
		- 6 - 5	22 28	30 31	9 190			3	-9 19	4 26	17 274			-	. 6 . 5	47 6	48	188 307			8 9	17 19	16 291 22 93
		- 4 - 3	7 41	6 45	278 3	16	2	- 3	9 16	12 12	64 349			-	4	57 31	48 23	348 189		נ נ	10 11	10 24	5 190 31 83
		- 2	12 59	22 70	198 185			- 1	22 9	16 5	195 204			-	. 2	64 64	71 57	199 188	7	3 -1	.2	12 11	11 282 6 184
		1 2 7	72 37	74 44	255 347			1	10 12	13	262				1 2	15 55 17	61 14	354 230	7	3 -1 1 -1	1	15 19	12 534 27 167
		2 4 7	12	19 16	218 215	17	2	- 5	14 8	16 7	271				3	35	33	190 101		-1	9 8	22 1 3	12 245 32 1
		8	19 14	18	352 11			- 3	12 14	6 16	67				56	22 20	14 10	327 145		-	7 6	18 6	11 154 11 301
		1Ó 11	9 7	-4 7	307 353			- 1 2	12 7	9	286 109				7 8	23 9	28 13	22 31		-	5 4	14 16	5 138 16 154
11	2	12 -15	11 7	25 14	168 94	18	2	13	14 14	11	358 177				9 10	12	18	14		2	32	15 29	23 352 11 148
		-14 -13	12 21	23 23	267 271	0	3	1 2	58 44	64 36	272				11 12	14 32	17 23	160		-	1 0	32 24	34 179 25 21

Paul and Sim:

h	k	l	F_0	$F_c \alpha$	h	k l	$F_0 F_c \alpha$	h	k l	$F_o F_c \alpha$	h	k l	$F_o F_c \alpha$
8	3 -	1 2 4 5 6 7 10 11 12 -15 -14 -13 -11	25215964371119292	5 292 46 173 18 185 9 328 20 220 48 183 15 13 6 261 20 200 8 90 5 30 10 272 68 90	12	-98643210123456 	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		- 2 1 0 1 2 3 4 56 7 8 9 0 1	29 19 88 14 17 171 14 19 228 41 69 88 32 19 260 142 142 95 27 29 100 106 99 269 68 75 265 66 70 86 24 32 107 17 22 281 16 18 52 20 29 269	4 5	4 10 12 4 -15 -14 -13 -12 -11 - 9 - 8 - 7 - 6 - 5 - 4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	-	-10 - 9 - 8 - 7	10 35 23 64	4 293 33 279 34 273 62 92		7 8 9	26 38 95 8 9 268 11 14 280		12 13 14	21 21 272 17 25 277 14 15 267		- 2 - 2 - 1 0	67 68 87 52 49 284 62 61 277
	-	- 6 - 5 - 4	9 63 48	2 88 56 270 37 94 73 91	13	3 -11 -10 - 9 - 7	10 3 19 8 14 7 20 17 15 21 15 166	2	15 16 4 -15 -14	22 21 100 7 6 74 8 3 64 8 1 279		1 2 3	29 21 94 31 40 107 49 49 285 35 39 270
		- 2 - 1 0	38 46 41	40 256 56 275 34 103		- 6 - 5 - 4 - 3	24 32 167 13 22 15 11 3 261 12 16 36		-11 -10 - 9 - 8	15 11 188 12 1 146 25 25 13 11 13 172		567	64 79 100 46 57 82 35 40 258
		2454	18 16 17	4 197 12 152 19 89		- 2 0 1 2	14 22 4 12 15 173 21 24 171 11 12 188		- 7 - 6 - 5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6	10 4 -15 -14	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
9	3 -	7 8 -13	16 10 7	10 282 19 282 17 263 1 94 24 359	14	4 7 3 -12 -11	20 23 338 10 18 203 11 6 268 15 18 89		- 3 - 2 - 1	39 31 3 24 23 142 38 34 4 29 26 13		-12 -11 -10	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	-	-11 -10 - 9	11 39 19	4 172 27 194 9 210		- 9 - 5 - 4 - 2	11 19 267 6 7 99 9 8 276 18 17 103	2	1 2 3 4 4	20 24 31 26 24 132 5 2 88 13 13 147			19 16 174 23 23 187 13 5 0
		- 7	18 22 22	20 224 22 340 11 335		0 1 2 3	36 35 261 12 14 271 39 36 104 10 12 80		56 78	34 38 15 22 20 119 14 16 204 33 23 9		- 4 - 3. - 2	24 13 150 33 37 187 12 5 201 22 15 198
		- 3.	28 62 41	23 230 81 179 38 188 16 206		4 6 7 8	24 24 261 13 19 102 11 13 256 12 15 264	3	10 11 4 -15 -14	22 26 350 20 28 175 14 9 272 33 28 87		0	18 22 174 8 12 308 15 15 188 9 7 236
•	7	123	61 10 18	68 3 10 233 19 159	15	9 10 3 0 2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-13 -12 -10 - 9	9 6 135 11 12 105 35 34 256 23 27 256		4567	35 42 0 22 30 177 7 14 234 8 13 147
9	2	46 7 8	20 15 22	36 181 25 162 29 347		3456	8 5 233 5 3 133 9 3 59 8 5 231		- 8 - 7 - 6 - 5	13 11 17 19 26 102 33 32 97 33 19 81	7	4 -14 -13 -12	15 16 277 7 7 273 27 21 88
10	3.	-14 -13 -12	24 12 26	20 272 10 249 23 96	16	7 3 - 9 - 8 - 5	8 5 203 13 7 257 7 1 188 22 24 268		- 4 - 3 - 2 0	27 33 272 106 102 266 47 48 95 3 10 145		- 9 - 8 - 7	17 19 266 12 13 142 32 42 100 29 23 263
	•	- 8	19 9 21	23 109 8 103 25 265		- 3 - 1 1 3	18 26 96 18 21 274 13 7 115 11 15 251		1 2 3 4	54 55 274 39 44 121 50 39 86 48 44 266	7	- 5 - 4 - 3	37 38 275 68 84 102 58 70 91 70 83 265
	•	- 4 - 3 - 2	40 16 20	39 96 24 241 20 279	17 18	3 0 3 - 8 - 6	10 13 3 18 16 185 13 11 98 19 16 266		56 78	70 76 264 79 90 94 22 33 92 37 42 255	r	- 1 0 1	40 38 278 22 22 98 33 47 95
		0 1 2	28 18 31	22 101 27 98 41 273		- 3 - 1 1 3	10 7 276 15 20 78 17 15 280 10 4 94		9 10 11 12	14 16 273 16 13 74 21 24 113 12 12 315		3456	17 11 351 18 20 113 19 13 250 27 32 294
		14.567	6 10 12	5 196 9 130 22 261	0 0	4 1 2 3 4 4	12 10 119 38 41 17 18 18 186 29 22 180	4	13 14 15 4 -14	12 11 290 9 10 98 10 10 83 8 6 73	8	7 8 4 -12 -11	7 12 259 14 15 92 12 9 189 14 21 5
11	3.	8 9 10	20 13 20 20	30 101 15 277 23 273		567 8	53 35 358 32 15 9 39 38 192 8 10 343		-13 -12 -11 -10	14 7 120 22 20 6 20 16 157 13 12 171		- 8 - 7 - 5 - 4	10 1 186 16 18 171 36 44 11 11 10 109
	· · · · · · · · · · · · · · · · · · ·	- 7	10 28 11 27	7 37 24 202 10 147 23 0		10 11 12	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		- 9 - 8 - 7 - 6	7 5 304 12 13 45 10 8 147 31 19 161		- 3 - 2 - 1 0	18 12 0 16 17 37 21 16 30 8 6 151
	•	- 4 - 3 - 2 - 1	13 11 16 13	9 321 20 195 11 150 22 337	1	4 -16 -15 -14	11 8 555 18 19 91 11 13 262 19 20 260 29 24 104		- 4 - 3 - 2	44 47 6 13 5 324 64 75 177 28 27 188		1 3 6 7	17 23 161 16 22 9 17 19 358 18 26 171
		0 1 2 3	13 14 10 22	15 186 7 340 8 325 30 178		-12 -11 -10	45 52 101 65 64 270 7 5 144		- 1 1 2	14 20 174 14 20 174 41 40 0 15 18 158	9	4 -13 -12 -11	7 7 210 17 19 95 12 15 90 24 25 274
		4 56 7	15 8 9 11	28 3 8 295 12 65 3 140		- 8765	24 18 100 11 7 249 8 8 171 88 85 04		74 56 2	18 24 359 12 17 87 20 23 188 6 12 164		-10 - 9 - 8 - 7	24 28 277 15 10 68 23 25 99 15 5 308
12	3.	-12 -11 -10	17 23 6	17 250 19 269 15 102		- 4 - 3	33 31 255 34 22 225		(8 9	23 28 12 7 17 15		- 6 - 5 - 4	19 21 274 29 35 96 9 12 115

h	k l	F_{0}	F_c	α	h	k l	F_o	F_{c}	α	h	k l	F_{o}	F _c α	h	k	l	Fo	F_{c}	α
	- 3 - 10 2 3 4 57	35 32 17 10 14 9 12	43 37 18 10 22 4 9	272 103 269 31 248 347 278 86	16 17	4 - 3 - 2 - 1 2 3 5	8 9 7 11 11 20 10	7 11 4 1 2 8 8	295 293 267 5 78 5 75 5 279 3 91 5 53	4	13 14 15 5 -12 -11 -10 - 9 - 8	11 12 7 10 40 24 25 9	11 177 13 177 6 359 0 0 28 93 30 286 13 248 15 99			321 01345	23 10 28 6 25 10 12 8	31 26 11 32 11 15 8	277 10 83 70 285 254 303 38
10	9 10 11 4 -14 -13 -11 - 9 - 8 7	15 12 7 8 16 6 14 9	22 14 6 3 14 4 15 11	282 291 155 180 352 346 155	18 0	4 - 3 5 2 3 4 5 7	9 9 10 11 20 21 10 18	2777 2777 1777 177	2 147 7 321 7 92 5 228 8 292 7 314 5 98 7 97 97	4	- 7 - 6 - 4 - 3 5 - 2 - 1 0 1	18 32 53 54 66 62 62	23 88 33 270 38 83 42 101 16 242 55 265 11 194 80 97	9	5 .	728765432	12 12 7 11 11 7 8 22 21	12 14 13 9 11 19 13 26 26	53 342 196 350 315 203 340 346 189
10	- 4 - 3 - 2 - 10 1 4 2	12 11 12 11 15 9 10 12	4 10 11 8 1 0 17	352 166 356 14 49 17 150 333	ı	10 11 12 15 5 -15 -13 -12 -11	11 26 19 7 18 31 9	21 21 10 30	3 31 1 103 5 275 3 97 5 16 9 184 0 358 5 36		3 4 5 7 9 11 12 14	55 56 37 38 15 11 7 9	56 265 57 90 49 115 45 271 23 105 8 351 7 142 4 342			101234560	7 11 22 11 7 13 8 16	10 7 27 11 8 9 10 27	231 6 354 244 232 19 340 188
11	3 4 7 8 9 10 4 -12 -11	17 16 9 13 8 10 17 10	22 17 15 16 16 16	153 350 183 340 4 184 272 294		-10 - 9 - 8 - 7 - 6 - 5 - 4 - 3	22 20 22 31 22 23 23 23	1 12 20 20 20 30 68 18	5 201 2 194 5 165 0 0 4 173 0 185 3 5 3 194	5	15 5 -14 -13 -12 -11 -10 - 9 - 7	10 11 9 30 23 30 11	5 304 10 345 8 358 30 181 17 201 34 6 4 277 8 235	10	5	10 13 12 10 .13 .12 .10 . 7 . 6	12 12 19 7 18 18	20 20 20 10 18	545 195 103 283 100 264 137 107
	-10 - 9 - 8 - 7 - 5 - 4 - 3 - 2	25 10 14 18 23 26 25	25 12 7 19 17 24 24 37	87 34 310 309 293 291 70 79		- 2 - 1 0 1 2 3 4 5	38 10 7 30 8 6 115 5	38	2 180 5 162 7 89 8 178 8 222 5 76 5 359 7 20		- 6 - 5 - 4 - 1 0 1 2	21 10 53 48 13 8 14 20	23 343 4 38 61 184 47 349 2 161 13 272 10 273 38 176	10	5 -	743201235	9912 15992 10	10 14 22 9 15 22 12	259 100 167 86 101 246 93 255
	- 1 2 6 7 8 9 10	20 7 24 10 19 8 7	10 17 12 33 15 26 8 7 14	289 288 277 98 86 269 263 75 91	2	7 8 10 11 14 15 5 -14 -12	4) 7 8 21 30 10 11 8 28	19	7 172 9 189 7 223 9 9 3 349 9 191 9 184 9 101 0 267	6	4 5 6 7 8 9 5 -13 -12	25 25 25 25 25 13 15 8	15 948 37 189 37 196 25 353 30 359 20 177 21 194 12 84 7 136	11	5 -	80 86 57 21	17 9 14 10 8 29 34	26 13 20 14 9 55 13 38	258 103 5 182 191 184 196 353
12	12 4 -12 -10 -9 -6 -5 -3 -1 0 1	8 12 11 6 22 9 23 11 21 21 27	8763 21824 11245 402	282 182 208 298 189 217 191 198 357 196 186		-10 - 98 - 76 - 54 - 32 - 0	⁸ 15 13 24 11 19 10 27 48 10		256 256 266 266 745 269 137 245 269 103 155		-11 -10 -9876 -54321	6 10 9 22 16 42 70 12 76 9	12 81 6 281 8 258 18 269 10 76 54 91 15 71 76 274 16 261	12	5	123457098764	23 97 17 14 15 15	22 7 5 7 26 19 8 14 6 8 16 18	195 257 181 179 189 260 295 109 102 279
13	5 7 4 -11 - 9 - 7 - 6 - 5 - 4	15 10 8 17 13 8 7 6	2 5 8 10 4 5 7 7	217 36 325 99 261 235 309 270 298		1 2 3 4 5 6 8 10 11	11 58 34 41 39 60 33 22 12		3 24 9 98 9 268 5 292 1 264 2 90 1 283 5 91 5 241	7	0 1 2 3 4 5 -14 -13 -12	45 24 33 17 22 8 9 30 17	42 87 18 242 37 284 14 139 21 81 10 145 7 4 26 180 17 189		-	432101234	15 7 18 14 37 8 9 8 11	18 12 14 13 28 8 10 9 9	249 287 228 96 128 251 278 160
	- 31 - 1012 345	12 26 15 13 42 28 16 16	15 37 12 8 54 31 17 15	95 276 269 70 93 279 279 274 89	3	12 14 5 -14 -13 -11 -10 - 9 - 8	36 9 16 13 46 8 12 10	37 1 44 1 1 44	7 274 9 115 1 194 7 4 3 352 3 212 3 200 4 332	7	-11 - 8 5 - 7 - 6 - 5 - 4 - 3 - 2	13 10 7 10 31 10 18 33	17 4 6 235 11 145 16 204 33 176 4 217 24 355 29 9	13	5 -	56421012	13 7 15 15 8 11 24 11	13 7 19 17 10 14 25 5	96 278 179 0 154 170 183
14	7 9 11 4 - 4 - 3 - 2	22 23 6 9 19 21	25 28 3 21 18	273 94 280 166 180 340		- 76 - 54 - 32	15 42 81 67 61 26	12 32 81 71 66 32	2 227 187 1 359 1 359 5 186 2 212		0123456	22 35 25 10 12 20	24 194 40 180 34 5 14 325 12 156 24 352 24 340	14	5 -	2432012	13 9 14 17 22 8 28	11 6 11 22 20 10 31	19 223 293 272 90 79 265
14 15	4 -10 - 8 - 7 - 6 - 5	14 16 14 16 22	10 17 18 13 8	186 272 117 100 272 243		- 1 1 2 3 4 5	29 28 26 11 10 21	22222	8 186 8 188 9 188 9 333 9 161 9 296 193	8	7 8 9 5 -13 -11 -10	25 11 9 8 27 12	35 187 12 192 10 343 7 116 21 268 7 188	15	5 -	497654	11 15 17 8 11 9	10 15 15 9 8	138 189 355 357 195 340
	- 4 - 2 - 1 0 2	18 25 7 32 18	12 27 9 33 17	98 266 282 89 285		6 7 10 11 12	19 15 11 8 17	31 13 13 14 26	177 4 3179 183 5358		- 9 - 8 - 7 - 5	44 15 35 15 15	36 94 17 86 36 268 14 243 16 91	16	- 5 -) 1 0 2 7	11 12 13 12	17 15 18 12 16	204 173 357 164 262

Paul and Sim:

h	k	[F_{o}	F_c	α	h	k	l	Fo	F_{c}	α	h	k	l	F_{o}	F_{i}	α	h	k	l	Fo	F _c a
16	5	- 5	14 11	11 11	116 278			3 4	22 23	17 26	173 188			- 1 0	22 62	19 66	209 5 101			-10 - 9	44 8	34 186 12 21
		- 1 2	13 15	13	-90 299			56	15 45	20 36	29 358			1 2	8 56	12 39	2 95 3 264			- 8 - 6	18 15	8 357 5 299
0	6	1 2	13 46	23 48	190 191			7 3	15 13	20 15	163			4 5	36 7	39	9 104 7 90			- 5 - 4	12 6	18 358 8 76
		3	30 53	34 48	357 6			9 10	16 13	24 14	178 354			9 10	13 10	18	8 100 2 244			- 3 - 2	11 14	9 190 20 167
		5 6	21 31	23 34	194 180			11	13 9	9	133 354			12 13	12	11	235			- 1 0	8 20	3 179 22 9
		8	8 18	11	36 162	5	6	-12	8	7	284 284	4	6	-12	25	20	0 183			2 4	6 25	5268 3313
		10	12	5	234 1			-10	13	18	90			-10	49	41	203	8	6	56	20 20	26 179 26 193
1	6	-13	10	9	181 54			- 9	18	15	100 91			- 7	12	13	5 5			8 11	13 9	16 352 9 342
		-12	10 8 10	3	252 218			- 6	12	6	37			- 5	39 34	34	178	9	6	-11 - 8	10 14	14 257 16 281
		- 9	21	19	282 260			- 3	20	29	84 273			- 3	42	40				- 6	13	6 125
		- 7	15 17	4	159 261			- 1 0	40 19	44 17	100			- ī	6 24	11	. 32 5 183			- 4	15 16	14 275
		- 5 - 4	7	20	117 96	5	6	1 2	36 49	41 53	267 270			23	17 22	19	115			0	30 10	35 89 13 94
		- 3	19 14	24 6	235 349			3	24 7	28 6	94 138			4	23 15	26	188			23	16 8	10 286
		- 1 0	23 4	37 8	260 111			56	2 5 18	33 28	76 272			6 7	45 15	36	358 4			4 7	8 8	14 109 19 85
		1	23	32 7	91 49			7 9	9	14	243			8 9	15	24	163	10	6	-11 - 9	9 7	2 258 4 224
		2 4 6	37	39 39	96 90			11	14 8	4	202 74			11	13	11	204 133 354			- 7	10	4 276
		7	7	6	271	б	6	13	7	0	260	5	E	14	8	9	18			- 3	15	18 190
		9 10	31 17	40 18	91 105	-	Ŭ	-11 -10	14 13	-6 12	18 32	-	-	-11 -10	1Ĩ 13	11 18	91 90			0	20 47	26 8 47 170
		11 12	10 15	9 17	256 263			- 9 - 8	9 9	6 15	177			- 9 - 8	21 18	20 15	100			23	10 27	7 347
2	6	-11 -10	14 22	6 22	211 175			- 7 - 6	24 22	23 28	18 178			- 7 - 6	27 12	2 8 6	264 37			56	-7 16	$\begin{bmatrix} 5 & 117 \\ 18 & 6 \end{bmatrix}$
		- 9 - 8	11 9	7 6	3 206			- 5	15 25	18 22	201 1			- 4	18 20	21 29	93 84	11	6	- ⁸	10 11	16 185 6 97
		- 7 - 5	29 43	37 44	187			- 2	11 25	25	335 200			- 2	40	58 44	100			- 3 - 2	9 10	1 97 9 46
		- 43	68 7	60	182			1	23	16	335	5	6	1	36	41	267 270			0	11 18	1 62 27 78
		- 1	44	50	107 8 162			46	23	25	179	5	Ű	3	24 7	28	94			3	18	17 72
		ı 2	20	15	201			7 9	27 21	40 25	180 2			56	25 18	33	272			6	14	14 285 3 107
		3	33 9	34 6	13 142			11 12	18 7	20 3	17 4 180			7 9	9 7	14 10	243 281	12	6	-10 - 8	14 30	11 11 24 175
		6 7	8 12	.13 19	3 8 5	7	6	13 -11	15 17	16 21	277 277			10 11	14 8	18	262 74			- 6 - 5	19 8	14 15 10 188
		8 9	8 12	17 12	17 187			-10 - 9	38 9	41	86 52	~	~	12 13	14	13	80 260			- 4 - 3	21 8	19 188 5 323
2	6	12	19	19 15	22 344			- 8	17	20	279	0	0	-12	14	6	191			- 2	17 30	20 2 24 187
3	6	-13	17	19 10	189 78			- 5	9	7	254 286			- 9	9	16	177			1	30 30	21 355
		-10	27	20	252			- 1 1	24 33	25 45	76 268			- 7 - 6	24 22	23	18 178	13	6	- 8	10	9 354
		- 8 - 7	14 10	ŝ	119 203			2 4	12 11	20 11	10 4 258			- 5	15 25	18 22	201 1		-	- 7 - 5	19 14	21 269 15 81
		- 5 - 4	13 20	15 14	120 147			7 12	8 12	10 13	97 268			- 2 - 1	11 25	25	335 200			- 3 - 2	7 8	i 353 10 273
		- 3 - 2	26 19	27 16	248 266	8	6	-12	16	16	2 173			1	23	16	335		c	0 1	11	8 275 12 270
		- 1	22 62	19 66	209 101			- 9	44 8 18	12	21 357			4	23 10	25	179	15	C	4	15 9 14	7 99
		2	56 36	38 30	264			-6	15 12	5 18	299 358			7	27 21	40	180	14	6	6-9	-14 15	11 291 12 183
		5	7	7	90 100			- 4 - 3	6 11	8 9	76 190			11 12	18 7	20	17 4 180			- 8 - 7	7 19	4 6 10 9
		10 12	10 12	12 11	244 91			- 2 - 1	14 _8	20 3	167 179	7	6	13 -11	15 17	16 21	277			- 5 - 4	11 10	11 188 11 35 4
	_	13 14	11 9	13 13	235 102			2	2 0 6	22	268			-10 - 9	38 9	41	86 52			- 3	23	4 4 7 21 191
4	6	-12 -11	25 9	20	183 203	2	6	4 12	25	15	13 344			- 8 - 7	19 17	20	279	16	c	- 1	13	18 185 15 7
		-10 - 8	49 26	41 19	9 189	3	6	-13 -13	10	19 10 12	159 78 109			- 5	25 9 7	22 7 16	254 286	10	0	- 6	7 11	8 91 12 274
		- 6	14	1) 20 34	15 178			-10 - 9	27 13	20	252 195			- í 1	24 33	25	76 268			~ 2	11 13	4 108 6 280
		- 4 - 3	34 42	37 40	184			- 8 - 7	14 10	12	119 203			2	12 11	20	104 258	0	7	1 2	3 10	3 197 5 293
		- 2 - 1	33 6	17 11	3 32			- 5 - 4	13 20	15 14	120 147	,	~	7 12	8 12	10	97 268			3 4	8	2 275 5 95
		2	24 17	23 15	183 115			- 3 - 2	26 19	27 16	243 266	8	6	-12 -11	15 16	$15 \\ 16$	173 173			26	26	31 266

TABLE 4. (Continued.)

h	k	l	F_o	F_{c}	; c	x	k	k	l	F_{o}	F_{c}	α	h	k	l	F_{o}	F_{c}	α	h	k	l	F_{o}	$F_c \alpha$
1	7	7 8 10 13 -12	9 12 7 8 10	0 18 14 7 4	16 10 29 28 20	58 29 34 30				9 19 19 21 21 32	14 16 20 13 10	30 201 200 39 339	6	7	10 12 13 14 - 9 - 8	20 7 9 12 22	20 8 9 11 13 18	196 357 203 275 273	9	7	4 58 - 3 - 3 - 1	14 12 14 17 22 13	18 282 16 281 14 186 18 1 27 186 22 355
		-10 - 9 - 8 - 7 - 6	14 27 15 9 7	15 26 14 16 9	35 16 21 12	7 54 59 18 28			012345	26 46 11 25 8	31 50 11 19 14	194 349 180 246			- 76	19 20 11 11 23 22	17 17 .4 10 29	92 103 253 266 267	9 10	7 7	023432	20 20 13 23 8 12	21 192 22 348 16 359 28 198 10 93 12 82
		- 3 - 2 - 1 0 1	28 21 32 20 32	28 29 46 33 41	19	4 35 30			7 8 9 10 11	13 13 17 12 19	12 14 13 17	259 196 351 354 196			17456	-7 11 9 16 5	7 14 13 21 7	223 99 270 261 270			- 10134	6 22 9 11 11	7 134 27 280 8 282 15 101 11 65
		234567	43 17 22 12 17 10	45 20 20 16 11		04 31 06 05 24	4	7	-11 -10 - 8 - 7 - 6	6 11 12 19 12	10 2 9 9 14 6	278 65 273 262 123	7	7	8 -11 -10 - 9 - 8	10 9 15 24 7	15 15 13 25 4	78 212 191 358 259	11	7	-10 - 9 - 7 - 6 - 5	24 5 7 12	10 356 20 195 3 19 10 350 13 206
2	7	9 10 12 -12 - 9	14 12 9 10 7	13 8 4 11 9	10	54 50 53 51 70			+ 4 - 2 - 1 2	22 15 19 4	23 19 14 25 6	280 99 87 269 86			- 7 - 53 - 20	11 6 12 9 42	13 2 7 54	182 24 242 307 357			- 3 - 1 0 1 2	13 21 11 21 7	10 14 15 192 20 185 24 6 8 342 20 182
		- 8 - 7 - 5 - 4 - 3	8 9 31 5 7	12 7 32 32	27	55 95 97 95 97			2 4 5 10	17 18 9 13 6	18 23 9 13 7	85 101 89 106 228 97			23457	19 22 16 19 20	42 20 22 21 22 15	179 355 359 186	12	7		14 16 9 13	16 358 18 271 2 68 6 119 5 167
2	7	- 1 - 0 1 2 3	28 6 7 14 11	41 9 7 16 9	29	31 35 31 35 31 35 31 35 31 35 31 35 31 35 31 35 31 35 31 35 31 35 31 35 31 35 31 35 31 35 31 35 31 35 31 37 37 37 37 37 37 37 37 37 37 37 37 37	5	- 7	-12 -11 -10 - 9 - 8	19 15 26 26 33	5 14 22 25 37	27 330 193 193 356	8	7	9 11 13 -11 -10	11 12 6 10 7	15 15 7 6	173 1 183 264 265	13	7	02865	8 7 18 10	14 288 12 114 9 355 19 191 5 208
3	7	4 7 10 11 -12	6 7 13 9 14	5 8 15 8 13	27 27 27	59 79 72 59				11 29 21 16 16	8 31 18 19 24	327 193 335 232 353			- 97 - 54	18 8 13 10 21	14 12 20 25	91 78 90 298 265 280			- 4 - 3 - 2 - 10 2	14 10 7 6 6	14 9 9 7 4 262 9 177 10 1 12 183
		-11 -10 - 9 - 8 - 7	11 24 13 28 42	16 14 26 41	18 17 35	4 7 38 75	5	7	23479	6 10 11 22	9 5 15 23	250 342 205			- 2 - 1 0 1	22 16 28 12	28 11 20 13	89 303 269 71	14 15	7 7	- 5 - 4 - 9 - 7	16 12 9	9 250 9 277 9 6 10 174

Transposition of the origin of the three-dimensional Patterson function to the sites of the iron atoms gave us a superposition function 9 which clearly revealed four chlorine atoms grouped tetrahedrally around each iron atom and confirmed that the chlorine atoms associated with Fe(2) are related to those of Fe(1) by the pseudo-glide in the *a*-direction. Confirmation of the positions of the chlorine atoms was obtained by computing around the iron atoms a three-dimensional electron-density distribution based on the phase constants (signs) appropriate to the iron atoms; peaks which could be assigned confidently to the chlorine atoms were obtained.

The ratio of the sum of the squares of the atomic numbers of the iron and chlorine atoms to the sum of the squares of the atomic numbers of the carbon and oxygen atoms is 1.56 and phase constants calculated on the basis of the iron and chlorine atoms were therefore expected to be sufficiently accurate to yield an electron-density distribution in which the organic molecule would be discernible. Indeed, the structure-factor calculation led to a value of R of 57% and in the subsequent electron-density distribution the aromatic nucleus of the atrovenetin molecule was well defined. We had considered it possible that the pseudo-glide symmetry applied only to the ferrichloride anions and not to the organic molecules, but thorough study of the electron density revealed few elongated atomic peaks and it was clear that most of the carbon and oxygen atoms conform to within a few tenths of an Ångstrom unit to the pseudo-symmetry. Four atoms C(18), C(20), C(24), and C(28) could not be assigned co-ordinates but for the rest of the molecule the average peak height of an oxygen atom was about $4 e Å^{-3}$ while the carbon atoms had peak heights of $2 \cdot 0$ — $3 \cdot 5 e Å^{-3}$. At this stage it was already apparent that the earlier structure (IV) proposed for atrovenetin required to be revised to (V).

Twenty-four carbon and oxygen atoms were included with the iron and chlorine atoms in the calculation of a further set of structure factors. The value of R was reduced to 40% and in the subsequent electron-density distribution the remaining four carbon atoms were located.

So far in the analysis we had taken the full symmetry of $P2_1/a$ to apply to the contents of

the unit cell and the asymmetric unit consisted, therefore, of one ferrichloride anion and one atrovenetin molecule. The true space group, however, is P2, and the glide plane can be only approximate. There is, unfortunately, no direct way of establishing the exact deviation of each atom from its pseudo-symmetrical position. We decided to try to reduce the symmetry by calculating structure factors with C(19) omitted from one molecule and C(17'), C(18'), C(19'), C(24'), C(26'), and C(28') omitted from the other molecule. The value of R was 32.9%.

In the subsequent electron-density distribution atoms C(24'), C(26'), C(28') had rather lower peak heights than the other atoms and were omitted from the next structure-factor calculation. Atoms C(9) and C(9') had peaks which were distinctly elongated in the x-direction and they too were omitted from the structure-factor calculation. With the revised co-ordinates for the other atoms the value of R fell to 27.8%.

Two further rounds of Fourier and structure-factor calculations, with all atoms (except hydrogen) included in the structure-factor calculations, reduced the value of R to 24.7%. We then calculated F_{o} and F_{c} syntheses, derived back-shift corrections for termination-of-series errors and assigned individual isotropic temperature factors. Two atoms, C(24') and C(28'), had rather lower peak heights in the F_0 map than in the F_c map and were omitted from the next structure-factor calculation. The value of R was 22.7%.

A three-dimensional difference electron-density distribution calculated with Fourier coefficients ($F_{\rm o} - F_{\rm c}$) indicated slight shifts in atomic positions and when structure factors were recalculated with all atoms (except hydrogen) included the value of R was 22.0%. A second difference map was then calculated and further slight adjustments to the atomic co-ordinates and isotropic temperature factors were made. On calculation of a further set of structure factors the value of R was 21.4%.

The refinement of atoms away from pseudo-symmetric positions is a lengthy and somewhat unsatisfactory process.^{13,14} In the present case we were unable to undertake a least-squares refinement, for the asymmetric unit comprises 66 atoms apart from hydrogen and the leastsquares programme ²⁴ for DEUCE is limited to a maximum of 64 atoms. Since, moreover, the study had reached a stage at which the chemical structure was clearly unambiguously established the analysis was concluded, although it was realized that the atomic co-ordinates were undoubtedly still approximate.

The theoretical atomic scattering factors derived by Berghuis et al.²⁵ for carbon and oxygen, by Tomiie and Stam²⁶ for chlorine, and by Freeman and Wood²⁷ for iron were used in all the structure-factor calculations; in the case of iron a correction for dispersion ($\Delta f'_{\kappa} = -1.72$) was applied.²⁸ The final calculated structure amplitudes and phase constants are listed with the measured values of the structure amplitudes in Table 4. The final three-dimensional electron-density distribution was evaluated on the basis of the phase constants of Table 4 and is shown in Fig. 2 by means of superimposed contour sections drawn parallel to (010). The final isotropic temperature factors are listed with the final atomic co-ordinates in Table 2.

The extensive calculations were performed on the Glasgow University DEUCE computer with programmes devised by Dr. J. S. Rollett and Dr. G. J. Sime. We thank the Carnegie Trust for a Scholarship (to I. C. P.).

CHEMISTRY DEPARTMENT, THE UNIVERSITY, GLASGOW W.2.

[Present address (G. A. S.): DEPARTMENT OF CHEMISTRY,

UNIVERSITY OF ILLINOIS, URBANA, ILLINOIS, U.S.A.]. [Received, May 13th, 1964.]

²⁴ Rollett, in "Computing Methods and the Phase Problem in X-ray Crystal Analysis," ed. Pepinsky, Robertson, and Speakman, Pergamon Press, Oxford, 1961, p. 87.

²⁵ Berghuis, Haanappel, Potters, Loopstra, MacGillavry, and Veenendaal, Acta Cryst., 1955, 8, 478.

²⁶ Tomiie and Stam, Acta Cryst., 1958, 11, 126.
²⁷ Freeman and Wood, Acta Cryst., 1959, 12, 271.
²⁸ James, "The Optical Principles of the Diffraction of X-rays," Bell, London, 1948.